Search results for "entropy solutions"

showing 7 items of 7 documents

A Fisher–Kolmogorov equation with finite speed of propagation

2010

Abstract In this paper we study a Fisher–Kolmogorov type equation with a flux limited diffusion term and we prove the existence and uniqueness of finite speed moving fronts and the existence of some explicit solutions in a particular regime of the equation.

Entropy solutionsPartial differential equationDiffusion equationApplied MathematicsMathematical analysisFlux limited diffusion equationsReaction–diffusion equationsFront propagationReaction–diffusion systemFisher–Kolmogorov equationFokker–Planck equationUniquenessDiffusion (business)Convection–diffusion equationAnalysisMathematicsJournal of Differential Equations
researchProduct

Some regularity results on the ‘relativistic’ heat equation

2008

AbstractWe prove some partial regularity results for the entropy solution u of the so-called relativistic heat equation. In particular, under some assumptions on the initial condition u0, we prove that ut(t) is a Radon measure in RN. Moreover, if u0 is log-concave inside its support Ω, Ω being a convex set, then we show the solution u(t) is also log-concave in its support Ω(t). This implies its smoothness in Ω(t). In that case we can give a simpler characterization of the notion of entropy solution.

Flux limited diffusion equationsEntropy solutionsApplied MathematicsHeat equationMathematical analysisRadon measureConvex setInitial value problemHeat equationAnalysisMathematicsJournal of Differential Equations
researchProduct

Nonlinear Diffusion in Transparent Media

2021

Abstract We consider a prototypical nonlinear parabolic equation whose flux has three distinguished features: it is nonlinear with respect to both the unknown and its gradient, it is homogeneous, and it depends only on the direction of the gradient. For such equation, we obtain existence and uniqueness of entropy solutions to the Dirichlet problem, the homogeneous Neumann problem, and the Cauchy problem. Qualitative properties of solutions, such as finite speed of propagation and the occurrence of waiting-time phenomena, with sharp bounds, are shown. We also discuss the formation of jump discontinuities both at the boundary of the solutions’ support and in the bulk.

Dirichlet problemflux-saturated diffusion equationsGeneral Mathematicsneumann problemMathematical analysisparabolic equationsBoundary (topology)waiting time phenomenaClassification of discontinuitiesparabolic equations; dirichlet problem; cauchy problem; neumann problem; entropy solutions; flux-saturated diffusion equations; waiting time phenomena; conservation lawsNonlinear systemMathematics - Analysis of PDEsFOS: MathematicsNeumann boundary conditionInitial value problemcauchy problemUniquenessdirichlet problemconservation lawsEntropy (arrow of time)entropy solutionsAnalysis of PDEs (math.AP)MathematicsInternational Mathematics Research Notices
researchProduct

Large solutions for nonlinear parabolic equations without absorption terms

2012

In this paper we give a suitable notion of entropy solution of parabolic $p-$laplacian type equations with $1\leq p<2$ which blows up at the boundary of the domain. We prove existence and uniqueness of this type of solutions when the initial data is locally integrable (for $1<p<2$) or integrable (for $p=1$; i.e the Total Variation Flow case).

Entropy solutionsIntegrable systemMathematical analysisp-LaplacianMathematics::Analysis of PDEsGeodetic datumNonlinear parabolic equationsMathematics - Analysis of PDEsentropy solutions; large solutions; p-laplacian; total variation flowp-LaplacianFOS: MathematicsLarge solutionsUniquenessTotal variation flowEntropy (arrow of time)AnalysisMathematicsAnalysis of PDEs (math.AP)Journal of Functional Analysis
researchProduct

On Approximation of Entropy Solutions for One System of Nonlinear Hyperbolic Conservation Laws with Impulse Source Terms

2010

We study one class of nonlinear fluid dynamic models with impulse source terms. The model consists of a system of two hyperbolic conservation laws: a nonlinear conservation law for the goods density and a linear evolution equation for the processing rate. We consider the case when influx-rates in the second equation take the form of impulse functions. Using the vanishing viscosity method and the so-called principle of fictitious controls, we show that entropy solutions to the original Cauchy problem can be approximated by optimal solutions of special optimization problems.

Cauchy problemConservation lawOptimization problemEntropy solutionsArticle SubjectVanishing viscosity methodMathematical analysisNonlinear fluid dynamicmodelsNonlinear conservation lawlcsh:QA75.5-76.95Computer Science ApplicationsNonlinear systemlcsh:TA1-2040Modeling and SimulationEvolution equationNonlinear fluid dynamicmodels; Vanishing viscosity method; Principle of fictitious controls; Entropy solutionsPrinciple of fictitious controlslcsh:Electronic computers. Computer scienceElectrical and Electronic Engineeringlcsh:Engineering (General). Civil engineering (General)Hyperbolic partial differential equationEntropy (arrow of time)MathematicsJournal of Control Science and Engineering
researchProduct

Some remarks on nonlinear elliptic problems involving Hardy potentials

2007

In this note we prove an Hardy type inequality with a remainder term, where the potential depends only on a group of variables. Such a result allows us to show the existence of entropy solutions to a class of elliptic P.D.E.'s.

hardy type inequalitySettore MAT/05 - Analisi Matematicanonlinear eigenvalue problemHardy type inequalitieentropy solutions
researchProduct

Up-wind difference approximation and singularity formation for a slow erosion model

2020

We consider a model for a granular flow in the slow erosion limit introduced in [31]. We propose an up-wind numerical scheme for this problem and show that the approximate solutions generated by the scheme converge to the unique entropy solution. Numerical examples are also presented showing the reliability of the scheme. We study also the finite time singularity formation for the model with the singularity tracking method, and we characterize the singularities as shocks in the solution.

granular flowsNumerical AnalysisEntropy solutionsup-wind schemeApplied MathematicsMathematical analysisEngquist–Osher schemeEntropy solutions up-wind scheme Engquist–Osher scheme spectral analysis complex singularities granular flowsspectral analysiscomplex singularitiesComputational MathematicsSingularityEntropy solutions / up-wind scheme / Engquist–Osher scheme / spectral analysis / complex singularities / granular flowsModeling and SimulationSpectral analysisGravitational singularityFinite timeSettore MAT/07 - Fisica MatematicaAnalysisMathematics
researchProduct